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We study spectral properties of discrete Schrödinger operators with potentials
obtained via dimerization of a class of aperiodic sequences. It is shown that both
the nature of the autocorrelation measure of a regular sequence and the presence
of generic (full probability) singular continuous spectrum in the hull of primitive
and palindromic (four block substitution) potentials are robust under dimeriza-
tion. Generic results also hold for circle potentials. We illustrate these results with
numerical studies of the quantum mean square displacement as a function of time.
The numerical techniques provide a very fast algorithm for the time evolution of
wave packets.
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1. INTRODUCTION

It is well known that the general rule for bounded random potentials V=
(Vn)n ¥ Z is the presence of Anderson localization and pure point spectrum for
the corresponding Schrödinger operatorsHV: l2(Z)Q l2(Z)

(HVk)n=kn+1+kn−1+lVnkn (1)

with potential intensity l > 0. This holds, in particular, for potentials
assuming only two values Vn ¥ {−1,+1}, -n. (1) Such strong lack of correla-
tion along different sites forbids long range tunneling and the mean square
displacement

m2(t)=C
n ¥ Z

n2 |kn(t)|2 (2)



is usually a bounded function of time, a property which turns out to be one of
the most used to probe (de)localization.

On the other hand, aperiodic potentials with long range correlation, e.g.,
almost periodic potentials, have shown many instances of weak delocaliza-
tion, marked by the presence of singular continuous spectra of the corre-
sponding Schrödinger operators. This is in particular noted for substitution
potentials assuming a finite number of values. (2–7) In such cases the delo-
calization can be characterized by the exponent

m2(t) ’ t2a, for large t (3)

with 0 [ a [ 1. Of course a=0 in case of localization, while for a=1 the so-
called ballistic motion occurs, a fact that has been related to absolutely con-
tinuous spectrum ofHV.

The discovery that random dimer potentials, which have strict local
correlations, are able to show delocalization for some potential intensities
with (numerically found) exponent a % 3/4, (8, 9) generated some surprise.
Recall that a dimer potentialW=(Wn)n ¥ Z is built uponV by the rule

W2n=W2n+1=Vn, -n ¥ Z (4)

Although the spectra of the random dimer operatorsHW (assuming only the
valuesWn=±1) are still pure point, (10) for some potential intensities, in par-
ticular for l [ 1, the local correlations introduced by dimerization cause the
appearance of the so-called critical energies, i.e., energies with null Lyapunov
exponent, opening the door for the numerical found delocalization.

In this work we address the influence of the dimerization on spectral
properties of a class of almost periodic potentials which are sequences with
long range order. For concreteness the potentials considered are generated
by some substitution sequences, (2, 6) a convenient choice since there are
plenty of examples of such sequences assuming only two values. These are
models of one-dimensional quasicrystals. Recall that the purely singular
continuous spectrum is the general rule for Schrödinger operators with
substitution potentials (see refs. 2–5, 7 and references therein).

The main questions discussed here are:

1. How does the dimerization affect the asymptotic conductance on
the lattice as specified by m2(t)? More precisely, does the dimerization
change (and how) the exponent a in Eq. (3)?

2. What are the influences of dimerization on the spectral type of the
original Schrödinger operator? Is the singular continuous spectrum robust
under dimerization?
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3. To what extent the dimerization modify the correlation measure of
the sequence itself ?

We discuss these questions in the reverse order they were presented.
On the last question above, we shall conclude that dimerization has a small
effect on the randomness (or lack thereof ) of a given sequence. The
appropriate quantity to measure randomness of the sequence u=(un) is an
autocorrelation measure, defined in Section 2, and denoted by su. We refer
the reader to Section 2 for the relevant definitions, and the proof of the
next theorem.

Theorem 1. Let u=(un) be a bounded sequence of complex
numbers such that the autocorrelation measure is unique. Then, the corre-
sponding dimerized sequence w=(wn) has a unique autocorrelation
measure. Moreover, if su has a single component (pure point, absolutely
continuous or singular continuous), then sw has the same component, and
conversely.

Now we look upon the second question. In ref. 10 it is proven that for
a large class of random Schrödinger operators the dimerization does not
change the pure point character of its spectrum. It is also clear that perio-
dic potentials keep periodic after dimerization, so that we have instances of
Schrödinger operators with absolutely continuous spectrum before and
after dimerization. Here we present examples of Schrödinger operators
with singular continuous spectrum which are (in some sense) robust under
dimerization; we consider palindromic (5) and also ‘‘four block’’ (11) substitu-
tion potentials. It is also important to recall that the autocorrelation func-
tions do exist for primitive substitution sequences, so that Theorem 1
applies. In Section 3 we provide the pertinent definitions and prove

Theorem 2. Let u=(un)n ¥ Z be an aperiodic substitution sequence
with hull W(u) palindromic and strictly ergodic, and w=(wn)n ¥ Z its
dimerization. Then there exist generic sets Gu in W(u), and Gw in W(w), for
which (for any l ] 0) Hv has purely singular continuous for each v ¥ Gu
and also for each v ¥ Gw.

We remark that the conclusion in Theorem 2 about v ¥ Gu is a result
of ref. 5, and in Section 3 it is shown that that proof can be adapted
for v ¥ Gw. It is in this sense we have found the singular continuous spec-
trum is robust under dimerization (see also Theorem 3).

We note in particular that Fibonacci (t(a)=ab, t(b)=a; see Section 3
for the definition of substitution sequences), Thue–Morse (t(a)=ab, t(b)=
ba) (5) and the nonprimitive (4) z(a)=aabaa, z(b)=b, substitution sequences
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are in the class for which Theorem 2 applies. We notice that in the recent
article (12) there are uniform spectral results for the case of dimerization of
Sturmian potentials.

The following theorem is an immediate application of the results of
ref. 11:

Theorem 3. Let u=(un)n ¥ Z be an aperiodic primitive substitution
sequence such that there exists a finite word q with qqqq occurring in u. If
w=(wn)n ¥ Z denotes its dimerization, then for almost every v in W(w) (with
respect to the unique invariant probability measure), Hv has purely singular
continuous spectrum (for any l ] 0).

This theorem applies, in particular, to the binary non-Pisot substitution
(t(a)=ab, t(b)=aaa) and simple adaptations (e.g., aQ ab, bQ an with
n \ 4, and the ‘‘generalized Fibonacci’’ aQ anb, bQ a with n \ 3). We also
remark that the hypotheses of Theorem 3 also imply the generic presence of
pure singular continuous spectrum for potentials in the respective hull.

The first question above is addressed from the numerical point of view
in Section 4. There it is also proposed an efficient algorithm for the time
evolution of wave packets according to Hamiltonian (1); it allowed us to
consider lattices of size 215 % 32000 on a Macintosh G4 microcomputer. It
consists of the fusion of a numerical technique originally proposed for the
kicked rotator (13) with sympletic integrators. (14) The numerical results are
summarized in Figs. 1 and 2. In Section 5 we draw our concluding remarks
and state the spectral results for circle potentials.

2. AUTOCORRELATION OF DIMERIZED SEQUENCES

In this section we show that the spectral type of a sequence does not
modify after dimerization. A bounded sequence of complex numbers v=
(vk)k ¥N (with suitable adaptations if k runs over Z) is called regular if its
autocorrelation function, (6, 15, 16) defined by the sequence

Cv(k)= lim
NQ.

1
N

C
N−1

n=0
vn+kvn, k \ 0

exists; extend it for negative integers by the expression Cv(−k)=Cv(k).
If v is regular then, by Bochner–Herglotz Theorem, there exists only one
Borel positive measure sv on the interval [0, 1], called its autocorrelation
measure, such that the Fourier transform

ŝv(k) — F
1

0
e i2pkt dsv(t)=Cv(k), -k ¥ Z
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The autocorrelation measures can be used to characterize regular
sequences qualitatively from ‘‘ordered to random:’’ sv is pure point for
periodic sequences, while for independent random sequences it is purely
absolutely continuous, and in between one would put sequences with singular
continuous autocorrelation measure. Notice that there are autocorrelation
measures of each spectral type within the almost periodic substitution
sequences; for example, Fibonacci’s is pure point, Thue–Morse’s is singular
continuous and Rudin–Shapiro’s is Lebesgue measure. (2, 6, 15)

With these preliminaries, we are in position to prove Theorem 1.
Denote by w=(wn) the dimerization, as indicated in (4) (but here restricted
to n ¥N), of a fixed regular sequence u=(un). Direct calculation results in
Cw(0)=Cu(0); now

Cw(1)= lim
NQ.

1
N

C
N−1

n=0
wn+1wn

= lim
NQ.

1
N
5 C
[N/2]

k=0
w2k+1w2k+ C

[N/2]

k=0
w2k+2w2k+16

and since w2k+1=w2k=uk, it follows that the limit defining Cw(1) exists
and

Cw(1)=
1
2 (Cu(0)+Cu(1))

In a similar way, one obtains that Cw(2) exists and

Cw(2)=Cu(1)

The same kind of argument applies for all values of k, and one gets
that the autocorrelation function of w exists and satisfy

Cw(2k)=Cu(k)

Cw(2k+1)=
1
2 (Cu(k)+Cu(k+1))

Therefore w is also regular. We shall denote by s and s the autocorrelation
measures of the sequences u and w, respectively. It remains to show that if
s has a single component, then s also has only that kind of component,
and conversely.

The above relations can be rewritten in terms of the Fourier transform
components ŝ and ŝ,

ŝ(2k)=ŝ(k) (5)

ŝ(2k+1)=1
2 (ŝ(k)+ŝ(k+1)) (6)
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which resembles a relation in Allouche and Mendès–France’s approach to
the autocorrelation of the Thue–Morse sequence. (15)

Set f(t)=2t and g(t)=2t−1, and for a measure m denote its image
under f by fgm=m p f−1 (analogously for ggm). By using relation (5)

ŝ(2k)=F
1

0
e2pi2kx ds(x)

=F
1/2

0
e2pik(2x) ds(x)+F

1

1/2
e2pik(2x) ds(x)

=F
1

0
e2piktd[fgs(t)+ggs(t)]=ŝ(k)

=F
1

0
e2pikt ds(t)

Therefore

s=fgs+ggs

Now Theorem 1 follows from the uniqueness of Lebesgue decomposition
of positive measures.

3. SPECTRUM OF SOME DIMER SCHRÖDINGER OPERATORS

In this section we prove Theorem 2; at the end we comment upon
Theorem 3. Let us recall some facts about substitution potentials, referring
the reader to the papers (2, 3, 5, 6) for further details. Since we consider only
potentials taking two values we mostly restrict ourselves to substitutions
t:AWAg on an alphabet A={a, b}; Ag is the set of all words of finite
length on A. Given x ¥Ag, its length is denoted by |x|. t is primitive if
there exists k such that both tk(a) and tk(b) contain all letters of A.
Denote by AN (AZ) the set of all (two-sided) sequences of letters in A; the
substitution t have natural extensions, by concatenation, to Ag, AN and
AZ; for example, t(ab)=t(a) t(b). A substitution sequence is a fixed point
v of t in AN or AZ, i.e., t(v)=v. Consider on AN (AZ) the point conver-
gence topology generated by the metric

d(u, v)=C
n

|un−vn |
2 |n|

, u=(un), v=(vn)
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with n ¥N (n ¥ Z). The existence of a fixed point follows from the assump-
tion, which we now make, that t(a) begins with a and that |tk(a)| goes to
infinity as kQ. (tk denotes the kth iterate of t; see, for instance, Propo-
sition V.1 in ref. 6).

Given a substitution sequence v̄ in AN, pick any v ¥AZ such that
vn=v̄n for n \ 0. If T:AZ

WAZ denotes the left shift (Tu)n=un+1, the hull
W of such sequence is defined as ref. 17 (see refs. 4, 16, and 18 for different
ways of dealing with this definition)

W={u ¥AZ : there exists nj Q., lim
jQ.
Tnjv=u}

i.e., it is the set of limit points of {Tnv} as nQ.; the hull does not depend on
the particular extension v of v̄ considered, and is a compact subset of AZ.
Recall that in important situations, for example for primitive substitutions
(Chap. V in ref. 6; see also ref. 4 for nonprimitive cases), TW=W and the
dynamical system (W, T) is strictly ergodic, i.e., it is minimal (every orbit is
dense) and has just one probability invariant measure.

If p(a)=+1 and p(b)=−1, we associate a substitution potential to
each u=(un)n ¥ Z ¥ W by (p(un))n ¥ Z, which we again denote by u. For a
subset of almost periodic substitution sequences, we investigate the spectral
properties of the Schrödinger operator Hu, given by (1), after dimerization.

We introduce the dimerization operatorD:AQA2={aa, bb},D(a)=aa,
D(b)=bb, and its natural extensions, by concatenation, to Ag, AN and AZ.
The image of D on AN is the set of dimerized sequencesAN

2 , that is, sequences
for which the occurrence of a given letter appears always in even lengths (with
clear interpretations of Ag

2 and AZ
2 ). Notice that D, restricted to each of such

sets, is injective, so we can define

t̃:AN
2 QAN

2

vW D p t p D−1(v)
(7)

and we have t̃n=D p tn p D−1. If w=(wn) is the dimerization, w2n=w2n+1
=un, of a sequence u=(un) ¥AN, then w=limnQ. t̃

n(aa)=D(u), since D
is continuous (one can see that D is actually a contraction in balls of radius
less than 1/2). It is clear that we can carry this construction to AZ, and we
shall not continue to mention this explicitly.

Given finite words A=a0 · · · an and B=bk · · · bm, we denote by #AB
the number of occurrences of A in B; if A occurs (somewhere) in B, it will
be indicated by the notation A … B. GivenW a finite word, we remark that
the cylinder sets

[W]={y ¥AZ : y0 · · · yn=W}
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are open and closed. In particular, they form a basis for the point conver-
gence topology.

Recall also that an element x ¥AZ is almost periodic if for each E > 0
the set of r ¥ Z for which

d(Tr(x), x) < E

is relatively dense, meaning that there is a K=K(E) such that every inter-
val of length K contains at least one such r. Such K’s are called E-periods
of x.

From now on we set u a fixed point of the substitution t:AQAg and
w=D(u). The following lemma is important for a reduction in the proof of
unique ergodicity (see below).

Lemma 1. (i) The cylinders T j[tn(a)] (resp. T j[t̃n(aa)]), -j, n,
generate the measurable sets of W(u) …AZ (resp. W(w) …AZ

2 ).

(ii) A sequence v ¥AZ is almost periodic if, and only if, the dynami-
cal system (W(v), T) is minimal.

Proof. Recall that the cylinders are a basis for the topology of W(v)
(or W(w)). For an alphabet of N letters, A={l1,..., ln}, an arbitrary
cylinder is the intersection of a finite number of suitable translates T j[li],
for i=1,..., n. A further reduction is possible since [ln] is the complement
of 1n−1

i=1 [li]. Therefore, for a two letter alphabet, it is enough to produce
the cylinder [a], which for the dimer is given by the union [aa] 2 T[aa].

Proofs of (ii), i.e., Gottschalk’s theorem, can be found in refs. 6
and 19. L

Remark 1. This lemma can be adapted to ‘‘any-mers,’’ i.e., for any
n ¥N, D(a)=a· · · a, with n factors, for all a ¥A.

Proposition 1. If (W(u), T) is strictly ergodic, then so is (W(w), T).

Proof. By Lemma 1, u is almost periodic; given E > 0, twice the
E-period of u will work for w, so w is also almost periodic; again by
Lemma 1, (W(w), T) is minimal.

To prove unique ergodicity of (W(w), T), we use Lemma 5.4 in
Chap. 4 of ref. 20, or Corollary IV.14 of ref. 6, so that it is enough to prove
that the frequency of t̃m(aa) in any finite word B of w approaches a
uniform positive limit when |B|Q.. Take Bn … w with kn=|Bn | and kn a
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monotone increasing sequence; it is then enough to prove that for each m
there is mm > 0 such that

lim
nQ.

#t̃m(aa)Bn
kn

=mm (8)

For any such word Bn, there are dimerized words An, Cn … w such that
An … Bn … Cn with |An | \ |Bn |−2 and |Cn | [ |Bn |+2; hence

#t̃m(aa)An [ #t̃m(aa)Bn [ #t̃m(aa)Cn (9)

Since for any dimerized word Z

#t̃m(aa)Z=#tm(a)D−1(Z)

we have that D−1(Cn) is a word of length (|Cn |/2), and D−1(An) has length,
at least, (|Cn |/2−1), both occurring in u. From such relations we get

lim
nQ.

#t̃m(aa)An
kn

= lim
nQ.

#t̃m(aa)Cn
kn

= lim
nQ.

1
2
#tm(a)D−1(Cn)
|Cn |/2

=
nm

2

with the relative frequency of tm(a) in u indicated by nm > 0 (since
(W(u), T) is strictly ergodic). Now relation (9) shows that the limit (8)
exists and with mm=nm/2 > 0. L

Remark 2. The same reasoning applies for alphabets with more
than 2 letters; one just has to evaluate the relative frequency of the smallest
set of words a, for which the cylinders T j[a] generate the s-algebra of
measurable sets.

Applying Proposition 1 and the results of Kotani–Last–Simon (21, 22) on
ergodic and minimal Schrödinger operators to our aperiodic potentials
assuming finitely many values (see also ref. 5), we conclude that for any
potential intensity l ] 0:

Corollary 1. If u is an aperiodic substitution sequence such that
(W(u), T) is strictly ergodic, then the Schrödinger operator Hv has no
absolutely continuous spectrum for any dimerized potential v ¥ W(w).

Our goal now is to exclude point spectrum of Hv for some v ¥ W(w).
Following ref. 5 we shall consider strongly palindromic potentials. A finite
word is a palindrome if it is the same whichever direction it is read: from
left to right or from right to left. An element v ¥AZ is called palindromic
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if v contains arbitrarily long palindromes, and the corresponding hull W(v)
is called palindromic. Finally, v ¥AZ is strongly palindromic if it contains a
sequence of palindromes of length li centered at mi Q. such that eBmi/
li Q 0, for a certain constant B \ 1, which in our case is determined by the
parameter l (see the proof of Theorem 8.1 in ref. 5).

Proposition 2. If W(u) is minimal and palindromic, then there
exists a generic set G … W(w) such that Hv has no eigenvalues for any v ¥ G.

Proof. Since the proof is a simple adaptation of results contained in
ref. 5 we just outline it. Being W(u) palindromic, there is a palindromic
sequence p ¥ W(u), and so D(p) is a palindromic sequence in W(w). By
Proposition 2.1 of ref. 5, there exists a strongly palindromic sequence
s ¥ W(w) for which Hs has no eigenvalues (Theorem 8.1 of ref. 5).

Since HTjs has the same spectrum as Hs for any j and, by minimality,
it is a dense set in W(w), it follows by the ‘‘Wonderland results’’ (23) the
existence of the generic set G … W(w) for which Hv has no eigenvalues for
any v ¥ G. L

The proof of Theorem 2 follows readily from the combination of
Corollary 1 and Proposition 2.

Proof of Theorem 3. It is clear that the presence of a Gordon-type
block, as in ref. 24, also occurs after dimerization, and an infinite number
of them (with increasing length) for a given potential exclude eigenvalues;
following ref. 11, a four block qqqq in the primitive substitution guarantees
the applicability of such Gordon-type argument in a set of positive
invariant measure; since the set of potentials for which the associated
operators have no eigenvalues is invariant, by ergodicity it has full
invariant measure. The aperiodicity of the sequence implies the absence of
absolutely continuous spectrum for such operators. From the proof of
Proposition 1 it follows that the dimerization of a full (invariant) measure
set also has full measure, concluding the proof of Theorem 3. L

4. NUMERICAL RESULTS

In this section we display the numerical results for the mean square
displacement, showing super-diffusive behavior for the almost periodic and
dimerized almost periodic potentials.

In order to consider larger finite basis approximations for the problem
in l2(Z), we propose a combination of techniques that resulted in a very
fast algorithm for quantum time evolution, with no matrix diagonalization;
two time steps will be involved, the first one being the decomposition of the
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final time evolution t is an integer multiple of Dt. We begin by recalling the
Trotter product formula for the propagator of a quantum Hamiltonian.
We decompose our Hamiltonian in its free (Kk)n=kn−1+kn+1 and ‘‘con-
tact’’ V=lu parts, so that HV=K+V,

e−i Dt HV=s− lim
NQ.

(e−i Dt K/Ne−i Dt V/N)N

which was estimated (see below) for each fixed large time step Dt.
From the proof of this formula, (25) one sees that in general we can

consider subsequences on its right hand side that have a different fac-
torization for the small time step s=Dt/N; for instance, with (see ref. 25)

e−i Dt V/2Ne−i Dt K/Ne−i Dt V/2N

one gets the so-called sympletic propagator of second order. (14) Factorizing
in more terms and using the Baker–Campbell–Hausdorff formula, one is
able to construct sympletic integrators of higher orders. We write each
factor in the Trotter formula as

e−is(K+V)=D
8

j=1
e−isd[j] Ke−isc[j] V+O(s7) (10)

where c[j], d[j] are positive real numbers with ; c[j]=; d[j]=1. We
have used this sixth order setting with an optimal number of factors (see
details in ref. 14). In terms of the disorder l, the bound N=14, l Dt [ 7,
has proved enough for convergence of the Trotter formula; we have used
Dt=5 for l [ 1 and Dt=3 for 1.1 [ l [ 2.

The factor e−isd[j] K is diagonal in ‘‘momentum’’ representation, while
e−isc[j] V is diagonal in ‘‘position’’ representation. Fixing the size of the
lattice as a power of 2, we can use fast Fourier transforms to jump the
propagator from position to momentum representation, and vice versa.
With such procedure it was possible to use bases of size L=215, on a
Macintosh G4 microcomputer, with a reasonable running time.

In our numerical calculations we have considered Fibonacci and Thue–
Morse potentials (assuming the values ±l). The initial condition was con-
centrated on the zeroth position of each finite basis approximation [−L/2,
L/2−1] 5 Z, and its time evolution computed as indicated above. The
maximum time span for the evolution was either 105 or less in case the
packet hits the border with probability 10−8.

The values of a in (3) were obtained from line fittings on the plots of
ln m2(t)× ln t. For large values of the potential l (the effective disorder
intensity is then 2l) such plots can present large oscillations and it was

Almost Periodic Dimers 1025



6

5

4

3

2

ln
 m

2
(
t)

864

ln t

5

4

3

2

1

ln
 m

2
(
t)

10864

ln t

Fig. 1. The mean square displacement for the Fibonacci potential, for l=1.2 averaged over
5 realizations (top), and l=1.7 averaged over 10 realizations. The dimerized cases are plotted
with a dashed line. Note the ln–ln scale.
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Fig. 2. The exponent a for the Fibonacci sequence as function of the potential intensity l:
(n) no dimerization; (+) after dimerization.
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necessary to employ averages over different initial conditions on the lattice
(we took up to ten realizations for each average), in order to get effective
straight line curves; notice that due to the almost periodicity of the poten-
tials, such averages correspond to ensemble averages over the hull. It is
remarkable that the plots in the Thue–Morse case present larger oscilla-
tions than the corresponding Fibonacci cases, so that we have restricted
l [ 1.3 for Thue–Morse potentials, while l [ 2.0 for Fibonacci ones. In all
cases we have got a < 1, as expected from the absence of absolutely con-
tinuous spectrum for those Hamiltonians.

In Fig. 1 m2(t) is shown for the Fibonacci Hamiltonian with l=1.2
and 1.7. Denote by ad the values of the exponent a for the dimerized
potentials. In the Fibonacci case, for small intensities ad > a, as an expected
contribution from the introduced local correlations, but for l % 1.4 we have
ad/a % 1, so there is a crossing of such values, and ad < a for larger inten-
sities. This is shown in Fig. 2, where the values of a and ad are presented as
function of the intensity l. Notice that the transition is also apparent from
the slopes in Fig. 1.

We cannot give a precise justification for this transition, but it appears
that the dimerization, in producing a local correlation in the sequence,
scrambles the long range order, which is so finely tuned by a substitution
rule. In the case of the Thue–Morse potential, however, we obtained
numerically that ad/a % 1 for 0 [ l [ 1.3. The Thue–Morse sequence has
some symmetries which are close to the dimerization. Note that it is
invariant under the substitution 1Q 1001 and 0Q 0110, so that the basic
dimer strings are all present in it. A look at the sequence reveals that even
three consecutive dimer strings occur in it. This does not happen in a
general substitution sequence, in particular the Fibonacci sequence does
not have one of the basic dimer strings.

It is tempting to point out the similarity of the transition in the
Fibonacci potential with the random dimer: they both show a change of
behavior at potential intensity l=1 (recall that in the random dimer
a=ad=0 for l > 1 and if l < 1, a=0 and ad=3/4 (8)). To this picture, we
may add the (trivial) periodic case which shows no transition, with
a=ad=1 for all l. But it is still a subtle problem the extent to which local
and long range order in the potential affects the propagation in the lattice.

5. FINAL REMARKS

We found that the autocorrelation measures of a given regular
sequence u and its dimerization w=D(u) share the same components:
notice that this more general version of Theorem 1 was actually proven.
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It is also applicable to any-mers, the proof needing just a slight adaptation
in the change of variables step.

It was numerically found that the exponent a ruling the algebraic
growth of the second moment m2(t) can present different behaviors after
dimerization, depending on the substitution and also on the disorder
intensity. So this paper adds some evidence that only the type of the
potential autocorrelation measure is not sufficient for a classification of
the behavior of physical quantities obtained from the corresponding
Schrödinger operator (see also ref. 26).

We note that the dimerization of a (finite valued) strongly palindromic
sequence, with parameter B > 2, is also strongly palindromic with the new
parameter B/2, so that the absence of eigenvalues can occur for Schrödinger
operators with both sequences as potentials. However, if the original
sequence generates a strictly ergodic hull, it is not at all obvious that so
does its dimerized version; that was the content of the proof of Theorem 2,
which can be adapted to any-mers. It is also worth pointing out that
for such results it is enough that the palindromic substitution sequence
generates strictly ergodic potentials, so that Theorem 2 holds for the
nonprimitive examples discussed in ref. 4.

A closer look at the proof of Theorem 2 reveals that only the proper-
ties of almost periodicity, unique ergodicity, aperiodicity and that it takes
only finitely many values (two, in fact) were employed, so that, by using
results of refs. 5 and 17, we can say something about the spectrum of
Schrödinger operators (1) with dimerized potentials generated by circle
sequences, i.e., ua, b, h=(un), with

un=q[a, b)(nb+h(mod 1))

here q[a, b) is the characteristic function of the interval [a, b) with 0 [ a <
b < 1, b an irrational number, and 0 [ h < 1. In this case the hull of ua, b, h is
independent of h, strictly ergodic and palindromic. (5, 17) Therefore,

Theorem 4. If b is an irrational number and wa, b, h is the dimeriza-
tion of ua, b, h, then W(wa, b, h) is aperiodic, strictly ergodic and palindromic.
Furthermore, for any l ] 0 the operator Hv, as defined in (1), has pure
singular continuous spectrum for v in a generic subset of W(wa, b, h).

Some interesting questions left for future investigations include the
relations of dimerization with Hausdorff dimensional properties of the
spectrum, whether uniform spectral results always persist after dimerization
(as is the case of Sturmian potentials (12)), and a possible explanation of the
results shown in Fig. 5, maybe in terms of the density of states.
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